Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|

F3 0F 5A /r CVTSS2SD xmm1, xmm2/m32 | A | V/V | SSE2 | Convert one single-precision floating-point value in xmm2/m32 to one double-precision floating-point value in xmm1. |

VEX.LIG.F3.0F.WIG 5A /r VCVTSS2SD xmm1, xmm2, xmm3/m32 | B | V/V | AVX | Convert one single-precision floating-point value in xmm3/m32 to one double-precision floating-point value and merge with high bits of xmm2. |

EVEX.LIG.F3.0F.W0 5A /r VCVTSS2SD xmm1 {k1}{z}, xmm2, xmm3/m32{sae} | C | V/V | AVX512F | Convert one single-precision floating-point value in xmm3/m32 to one double-precision floating-point value and merge with high bits of xmm2 under writemask k1. |

Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |

A | NA | ModRM:reg (w) | ModRM:r/m (r) | NA | NA |

B | NA | ModRM:reg (w) | VEX.vvvv | ModRM:r/m (r) | NA |

C | Tuple1 Scalar | ModRM:reg (w) | EVEX.vvvv | ModRM:r/m (r) | NA |

Converts a single-precision floating-point value in the “convert-from” source operand to a double-precision floating-point value in the destination operand. When the “convert-from” source operand is an XMM register, the single-precision floating-point value is contained in the low doubleword of the register. The result is stored in the low quadword of the destination operand.

128-bit Legacy SSE version: The “convert-from” source operand (the second operand) is an XMM register or memory location. Bits (MAXVL-1:64) of the corresponding destination register remain unchanged. The destination operand is an XMM register.

VEX.128 and EVEX encoded versions: The “convert-from” source operand (the third operand) can be an XMM register or a 32-bit memory location. The first source and destination operands are XMM registers. Bits (127:64) of the XMM register destination are copied from the corresponding bits in the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.

Software should ensure VCVTSS2SD is encoded with VEX.L=0. Encoding VCVTSS2SD with VEX.L=1 may encounter unpredictable behavior across different processor generations.

IF k1[0] or *no writemask* THEN DEST[63:0] ← Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0]); ELSE IF *merging-masking* ; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[63:0] = 0 FI; FI; DEST[127:64] ← SRC1[127:64] DEST[MAXVL-1:128] ← 0

DEST[63:0] ←Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC2[31:0]) DEST[127:64] ←SRC1[127:64] DEST[MAXVL-1:128] ←0

DEST[63:0] ←Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]); DEST[MAXVL-1:64] (Unmodified)

VCVTSS2SD __m128d _mm_cvt_roundss_sd(__m128d a, __m128 b, int r);

VCVTSS2SD __m128d _mm_mask_cvt_roundss_sd(__m128d s, __mmask8 m, __m128d a,__m128 b, int r);

VCVTSS2SD __m128d _mm_maskz_cvt_roundss_sd(__mmask8 k, __m128d a, __m128 a, int r);

VCVTSS2SD __m128d _mm_mask_cvtss_sd(__m128d s, __mmask8 m, __m128d a,__m128 b);

VCVTSS2SD __m128d _mm_maskz_cvtss_sd(__mmask8 m, __m128d a,__m128 b);

CVTSS2SD __m128d_mm_cvtss_sd(__m128d a, __m128 a);

Invalid, Denormal

VEX-encoded instructions, see Exceptions Type 3.

EVEX-encoded instructions, see Exceptions Type E3.